On the distance to the zero set of a homogeneous polynomial

نویسنده

  • Michael Shub
چکیده

In this paper we prove simple estimates relating the value of a complex homogeneous polynomial at a point to the distance of the point to the zero set of the polynomial, and also the distance to the zero set along a projective line to the distance in projective space. Our motivation for doing this was to give a quantitative aspect to the algorithm of W. Zulehner and to relate it to the algorithms of J. Renegar, J. Canny, and M. Kim. o IYXY Audcmlc PB\. IIK

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Forcing Set on Fuzzy Graphs

The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...

متن کامل

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Complexity

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1989